图像处理入门:实现一个简单的滤波器

简介人脸识别和目标检测这样的术语听起来觉得很酷,但是当涉及到从头开始实现它们时,每个初学者都会觉得困难,这些技术实际上并没有那么难实现,一旦你掌握了其基本原理,那么实现它们就相当简单了。图像处理有很多种应用,包括用于解析文档和生成相应文本的光学字符识别(OCR)、图像增强与重建、物体识别、人体运动识别、手势识别、人脸识别等。在学习的过程中,你会遇到过奇形怪状的各种图像滤波器,那有没有去思考如何实现它吗,在本文中,我们将通过实现一个简单的滤波器来开始我们的图像处理之旅!什么是OpenCVOpenCV是一个开源库,包含了许多 算法。它在计算机视觉和图像处理中起着重要作用,用于实时操作,其效率足以满足工业上的要求。OpenCV可以与其他库一起使用,比如Numpy,这使得Python能够处理OpenCV数组结构。实现我们的第一个滤波器检测逻辑计算机不能像人类一样识别物体,为了能让计算机达到这个目的,我们可以使用各种技术来让计算机理解图像,我们会将颜色作为检测物体的主要依据。我们使用HSV颜色空间作为检测特征。什么是HSVHSV是Hue, Saturation 和Value(色调、饱和度和值)。色调:根据光谱,物体的颜色可分为红、蓝、绿、黄四种颜色。饱和度:它定义了颜色的强度。值:定义颜色的亮度。OpenCV中有150多种颜色空间转换方法,其中一种是彩色图像到HSV图像的转换。我们来看看代码我们需要导入我们要使用的库-OpenCV(cv2)和Numpy。import cv2

Read More →

目标检测二十年间那些事儿:加速与优化

在上一章中我们简短回顾了目标检测在过去的二十年中如何从传统滑窗算法到基于深度神经网络的全新领域,点击回顾。这次,我们来分享一些近年涌现的各类优化技术,正是这些技术让目标检测一再提速,从而能在工程上应用到各类设备中。

Read More →