论文:A Hierarchical Graph Network for 3D Object Detection on Point Clouds由于大多数现有的点云对象检测方法不能充分适应点云的特征(例如稀疏性),所以一些关键的语义信息(如物体形状)不能被很好的捕捉到。本文提出了一种基于层级图网络(HGNet)的图卷积(GConv),可以直接将点云作为输入来预测 3D 的边界框。形状注意图卷积(SA-GConv)可以通过剑魔点的位置星系来描述物体形状,基于 SA-GConv 的 U 形网络可以通过改进的 voting 模块获取多层级的特征进而生成候选,然后一个基于图卷积的候选推理模块考虑全局的场景语义来对边界框进行预测。该框架在两个大规模点云数据上的表现超过了目前最先进的模型。
文/王新喜 来源:热点微评(ID:redianweiping) 日前,据 36 氪消息,阿里巴巴取消了内部系统的“P”序列职级显示,员工在邮件、钉钉、内网等系统中已无法再看到彼此的职级,只能看到所属集团部门。