9 月 1 日消息,小米 POCO X3(型号为 M2007J20CG)现身 GeekBench 跑分网站,单核成绩为 571,多核成绩为 1766,配备 6GB 内存,运行 Android 10。   GeekBench 页面显示,小米 POCO X3 搭载的是高通骁龙 732G 处理器,这是全球首款骁龙 732G 机型。   据悉,骁龙 732G 是高通最新推出的中端芯片,它采用 8nm 工艺制程打造,由2×Kryo 470 2.3GHz 大核(Cortex A76)+6×Kryo 470 1.8GHz 小核(Cortex A55)组成,GPU 为 Adreno...... Last article READ

CVPR 2020 |用于3D目标检测的层级图网络

论文:A Hierarchical Graph Network for 3D Object Detection on Point Clouds

由于大多数现有的点云对象检测方法不能充分适应点云的特征(例如稀疏性),所以一些关键的语义信息(如物体形状)不能被很好的捕捉到。本文提出了一种基于层级图网络(HGNet)的图卷积(GConv),可以直接将点云作为输入来预测 3D 的边界框。形状注意图卷积(SA-GConv)可以通过剑魔点的位置星系来描述物体形状,基于 SA-GConv 的 U 形网络可以通过改进的 voting 模块获取多层级的特征进而生成候选,然后一个基于图卷积的候选推理模块考虑全局的场景语义来对边界框进行预测。该框架在两个大规模点云数据上的表现超过了目前最先进的模型。

论文背景

由于点云的稀疏性,一些已有的为网格形式数据设计的方法(如CNN)在点云上的表现并不好,为解决这一问题,最近有一些对点云数据的方法被提出,例如基于投影的方法、基于体卷积的方法和基于 PointNet 的方法。前两种试图将点云数据严格转换为网格结构数据,而后一种则在不明确考虑点的几何位置的情况下聚合特征。

与其他方法相比,PointNet++ 可以保留点的稀疏特点,因此被广泛作为框架的骨架。当目前仍有一些未能很好解决的挑战,首先由于没有考虑点的相对几何位置,因此使用 PointNet++ 作为主干忽略了一些局部形状信息。其次,框架的结构没有充分利用多级语义,这可能会忽略一些有助于目标检测的信息。

本文提出了一个基于图卷积(GCONV)的层级图网络(HGNet)用于基于点云的 3D 目标检测。HGNet 包含三部分:一个基于图卷积的 U 形网络(GUnet)、一个候选生成器以及一个候选推理模块(ProRe Module)。

整个 HGNet 以端到端的方式进行培训。在本文的框架中,点云的局部形状信息、多级语义和全局场景信息(候选的特征)已被层级图模型充分捕获、聚合和合并,充分考虑了点云数据的特征。

本文的主要贡献如下:

(A)开发了一种新的层级图网络(HGNet),用于在点云上进行 3D 对象检测,其表现好于已有方法。

(B)提出了一种新颖的 SA-(De)GConv,它可以有效地聚合特征并捕获点云中对象的形状信息。

(C)构建了一个新的 GU-net,用于生成多级特征,这对于 3D 对象检测至关重要。

(D)利用全局信息,ProRe 模块通过对候选进行推理来提高效果。

论文模型

融合采样

3D 目标检测有基于点和基于体素两种框架,前者更加耗时,由候选生成与预测细化两个阶段组成。

在第一个阶段,SA 用于降采样以获得更高的效率以及扩大感受野,FP 用来为降采样过程中丢掉的点传播特征。在第二阶段,一个优化模块最优化 RPN 的结果以获得更准确的预测。SA 对于提取点的特征是必需的。但 FP 和优化模块会限制效率。

形状注意图卷积

点云通常不能清楚地表示出物体的形状,可以使用其相邻点的相对几何位置来描述点周围的局部形状。本文介绍了一种新颖的形状注意图卷积,它通过对点的几何位置建模来捕获对象形状。

对于一个点集 X,其中每一个点由其集合位置 p_i 以及 D 维的特征 f_i 组成,我们想要生成一个 X’,本文设计了图卷积用于聚合从 X 到 X’ 的特征。与 PointNet++的采样层相类似,本文首先从 n 个点中采样 n’ 个点,通常 K 最近邻(KNN)被用来在采样中保留局部信息将其作为中心点特征。

其中 g 表示 i 和 j 的相对位置,通过一个卷积将三维变为一维,f 是 mlp,然后二者的乘积就是中心点的 knn,其中最大的作为 i 的特征。形状注意操作不同于简单的基于 mlp 的操作主要就是因为这个 g 函数。虽然形式上没有 attention 中的 softmax 这样的归一化,但是 g 的输出就和 attention一样,每个点的 weights,然后对应的乘以特征。

算力说医疗领域被认为是对于隐私数据要求最高的场景,而在这个方向的数据若是共享,其效应将会巨大。医疗平台集聚个人最私密的数据,共享是否意味着即失守?开放应用生态更成无本之木?改弦更张,尝试用新一代智能数据技术替代传统的共享方式以释放数据价值,逐步成为发展共识。那么,新技术有哪些落地方式,又如何提升诊疗准确度?8月25日,翼方健数 CEO 罗震 在SIGKDD·SDBD2020 第二届智能数据和区块链应用国际研讨会上带来《隐私安全计算下的数据和算法的互联互通》的专题分享,谈谈怎样为医疗信息系统装上智能的“最强大脑”。1你所认知的医疗行业的数据问题,其实在行业具有普适性罗震介绍说,翼方健数主要在医疗......Next article READ